I Desak Putu Kartika Pratiwi
Program Studi Teknologi Pangan, Fakultas Teknologi Pertanian, Universitas Udayana, Indonesia
Gusti Ayu Kadek Diah Puspawati
Program Studi Teknologi Pangan, Fakultas Teknologi Pertanian, Universitas Udayana, Indonesia
Komang Ayu Nocianitri
Program Studi Teknologi Pangan, Fakultas Teknologi Pertanian, Universitas Udayana, Indonesia
DOI: https://doi.org/10.19184/j-agt.v17i01.27811
ABSTRACT
Proso millet (Panicum miliaceum L.) was evaluated as a source of dietary fiber. Preprocessing of millet flour could increase dietary fiber. The dietary fiber is considered to provide benefits as a prebiotic. The purpose of this study was to analyze the effect of preprocessing on millet flour dietary fiber and its ability to stimulate the growth of probiotic Lactobacillus rhamnosus SKG34. The research was conducted in two stages, i.e. preprocessing millet flour and viability of probiotic bacteria (Lactobacillus rhamnosus SKG34) on different broth media. First, millet flour was made in various preprocessed method: without preprocessing, germination preprocessing, fermentation preprocessing, germination – fermentation preprocessing. Second, the viability of Lactobacillus rhamnosus SKG34 was carried out on various media broth: glucose-free MRS (control), MRS, adding dietary fibers extract from millet flour with different preprocessing. The results showed that millet flour with fermented preprocessing (F) provided the highest dietary fiber of 22.38% with a water content of 11.97% and a tannin content of 0.08%. L. rhamnosus SKG34 exhibited the highest viability when grown in MRS broth. The addition of dietary fiber extract did not significantly enhance the viability of L. rhamnosus SKG34 compared to the glucose-free MRS broth (control), which showed a viability of 5 log10 CFU/mL. Thus, it can be concluded that millet preprocessing with fermentation (F) can significantly increase the dietary fiber of millet flour. However, dietary fiber millet has no potential as a suitable prebiotic candidate for promoting probiotic bacterial growth.
Keywords: dietary fiber, lactic acid bacteria, millet flour, prebiotic, preprocessed
REFERENCES
AOAC. (2005). Official Methods of Analysis. Association of Official Analytical Chemist 18th Edition. Arlington, VA, USA.
Charalampopoulos, D., Wang, R., Pandiella, S. S., & Webb, C. (2002). Application of cereals and cereal components in functional foods: A review. International Journal of Food Microbiology, 79(1–2), 131–141. https://doi.org/10.1111/ijfs.1395
Dewi, I.G.A.A.S.P., Ekawati, I.G.A., & Pratiwi, I.D.P.K. (2018). Pengaruh lama perkecambahan milet (Panicum milliaceum) terhadap karakteristik flakes. Itepa: Jurnal Ilmu dan Teknologi Pangan, 7(4), 175–183. https://doi.org/10.24843/itepa.2018.v07.i04.p04.
Iswarya, A.L., & Narayanan, A. (2016). Effect of germination on biofortified pearl millet cultivars’ nutrient content. International Journal of Innovation and Research in Educational Sciences, 3(6), 391–396.
Khandelwal, S., Udipi, S.A., & Ghugre, P. (2010). Polyphenols and tannins in Indian pulses: Effect of soaking, germination and pressure cooking. Food Research International, 43(2), 526–530 DOI: 10.1016/j.foodres.2009.09.036
Kindiki, M.M., Onyango, A., & Kyalo, F. (2015). Effects of processing on nutritional and sensory quality of pearl millet flour. Food Science and Quality Management, 42(1), 13–19.
Lei, V., Friis, H., & Michaelsen, K.F. (2006). Spontaneously fermented millet product as a natural probiotic treatment for diarrhoea in young children: An intervention study in Northern Ghana. International Journal of Food Microbiology, 110(3), 246–253. DOI: 10.1016/j.ijfoodmicro.2006.04.022
Li, C., Oh, S.-G., Lee, D.-H., Baik, H.-W., & Chung, H.-J. (2017). Effect of germination on the structures and physicochemical properties of starches from brown rice, oat, sorghum, and millet. International Journal of Biological Macromolecules, 105, 931–939. DOI: 10.1016/j.ijbiomac.2017.07.123
Lorri, W., & Svanberg, U. (1993). Lactic acid-fermented cereal gruels: Viscosity and flour concentration. International Journalof Food Sciences and Nutrition, 44, 207–213. https://doi.org/10.3109/09637489309017441
Martín-Cabrejas, M.A., Sanfiz, B., Vidal, A., Mollá, E., Esteban, R., & López-Andréu, F.J. (2004). Effect of fermentation and autoclaving on dietary fiber fractions and antinutritional factors of beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 52(2), 261–266. DOI: 10.1021/jf034980t.
Nishitani, Y., Sasaki, E., Fujisawa, T., & Osawa, R. (2004). Genotypic analyses of Lactobacilli with a range of tannase activities isolated from human feces and fermented foods. System. Appl. Microbiol, 27(1), 109–117. DOI: 10.1078/0723-2020-00262
Onyango, C.A., Ochanda, S.O., Mwasaru, M. A., Ochieng, J.K., Mathooko, F.M., & Kinyuru, J.N. (2013). Effects of malting and fermentation on anti-nutrient reduction and protein digestibility of red sorghum, white sorghum and pearl millet. Journal of Food Research, 2(1), 41. DOI: 10.5539/jfr.v2n1p41
Pushparaj, F.S., & Rrooj, A. (2011). Influence of processing on dietary fiber, tannin and in vitro protein digestibility of pearl millet. Food and Nutrition Sciences, 2 (8), 895-900. DOI: 10.4236/fns.2011.28122
Pratiwi, N.Y., Nurhayati, & Nafi, A. (2012). Evaluasi sifat prebiotik serat pangan tidak larut air (STLA) terekstrak dari tepung buah pisang agung dan pisang mas. Jurnal Agroteknologi, 6(1), 29–39.
Pratiwi, I.D.P.K., & Putra, I.N.K. (2018). “Optimasi Proses Fermentasi Pada Pengolahan Proso Milet (Paniceum miliaceum L.) dan Pengaruhnya Terhadap Kualitas Tepung yang Dihasilkan”. Laporan Akhir Penelitian. Universitas Udayana, Bali.
Pratiwi, I.D.K., & Sugitha, I.M. (2020). kandungan tanin dan serat pangan dari tepung kecambah milet dan tepung kecambah milet terfermentasi. Jurnal Ilmiah Teknologi Pertanian Agrotechno, 5(1), 34–38. DOI: https://doi.org/10.24843/JITPA.2020.v05.i01.p06
Purnamasari, N., Nur Faridah, D., & Sri Laksmi Jenie, B. (2019). Karakteristik sifat prebiotik tepung daluga hasil modifikasi heat moisture treatment. Jurnal Teknologi dan Industri Pangan, 30(1), 36–45. https://doi.org/10.6066/jtip.2019.30.1.36
Rahman, I.E.A., & Osman, M.A.W. (2005). Effect of sorghum type (Sorgum bicolor) and traditional fermentation on tannins and phytic acid contents and trypsin inhibitor activity. Agriculture & Environment, 9(3), 63–166.
Saputro, D.H., Andriani, M., & Siswanti. (2015). Karakteristik sifat fisik dan kimia formulasi tepung kecambah kacang-kacangan sebagai bahan minuman fungsional. Jurnal Teknosains Pangan, 4(1), 10–19.
Sawatari, Y., Hirano, T., & Yokota, A. (2006). Development of food grade media for the preparation of Lactobacillus plantarum starter culture. Journal of General and Applied Microbiology, 52(6), 349–356. https://doi.org/10.2323/jgam.52.349
Schons, P.F., Ries, E.F., Battestin, V., & Macedo, G.A. (2011). Effect of enzymatic treatment on tannins and phytate in sorghum (Sorghum bicolor) and its nutritional study in rats. International Journal of Food Science and Technology, 46(6), 1253–1258. https://doi.org/10.1111/j.1365-2621.2011.02620.x
Shimelis, E.A., & Rakshit, S.K. (2007). Effect of processing on antinutrients and in vitro protein digestibility of kidney bean (Phaseolus vulgaris L.) varieties grown in East Africa. Food Chemistry, 103(1), 161–172.
Sri, B., Jenie, L., Putra, R.P., & Kusnandar, F. (2012). Fermentasi kultur campuran bakteri asam laktat dan pemanasan autoklaf dalam meningkatkan kadar pati resisten dan sifat fungsional tepung pisang tanduk (Musa paradisiaca formatypica). Jurnal Pascapanen, 9(1), 18–26.
Van Hung, P., Maeda, T., Yamamoto, S., & Morita, N. (2012). Effects of germination on nutritional composition of waxy wheat. Journal of the Science of Food and Agriculture, 92(3), 667–672. DOI: 10.1002/jsfa.4628.
Wulan, S.N., Saparianti, E., Widjanarko, S.B., & Kurnaeni, N. (2006). Modifikasi pati sederhana dengan metode fisik, kimia, dan kombinasi fisik-kimia untuk menghasilkan tepung pra-masak tinggi pati resisten yang dibuat dari jagung, kentang, dan ubi kayu. Jurnal Teknologi Pertanian, 7(1), 1–9.