Potensi Bawang Hitam (Black Garlic) dari Berbagai Jenis Bawang Putih Lokal sebagai Hipoglikemik pada Tikus Hiperglikemia
(The Potential of Black Garlic from Various Types of Garlic as Hypoglycemic in Hyperglycemic Rats)
Potensi Bawang Hitam (Black Garlic) dari Berbagai Jenis Bawang Putih Lokal sebagai Hipoglikemik pada Tikus Hiperglikemia
(The Potential of Black Garlic from Various Types of Garlic as Hypoglycemic in Hyperglycemic Rats)
Herlina
Program Studi Teknologi Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Jember, Indonesia
Nia Ariani Putri
Program Studi Teknologi Pangan, Fakultas Pertanian, Universitas Sultan Ageng Tirtayasa, Indonesia
Mukhammad Fauzi
Program Studi Teknologi Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Jember, Indonesia
Elka Rosa Damayanti
Program Studi Teknologi Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Jember, Indonesia
DOI: https://doi.org/10.19184/j-agt.v18i2.53728
ABSTRACT
Free radical compounds in the body are very reactive to cells, so they can cause various diseases, one of which is diabetes mellitus. Compounds that are able to ward off free radicals are called antioxidants. Black garlic are known to contain bioactive compounds including SAC (S-allyl cysteine), polyphenols, and flavonoids which can treat diabetes or hyperglycemia. This research on black garlic as a hypoglycemic aims to determine the potential of black garlic from various types of local garlic and types of black garlic which have the most potential as hypeglycemic in hyperglycemic rats. In vivo testing was carried out by inserting groups of rats in each cage (20–25°C) after being fed and drinking ad libitum. Each group of hyperglycemic rats was treated with black garlic from honan garlic, green spices, and lanang garlic at a dose of 250 mg / 200 g BW per day. Examination of tested animals includes body weight, hypoglycemic effect testing, blood glucose response testing, and malondialdehyde (MDA) levels. The results showed that black garlic can reduce blood sugar levels by 54.7%, blood glucose response by 1.25%, and reduce MDA levels by 72.98%. Honan black garlic can reduce blood sugar levels by 52.6%, blood glucose response by 12.29%, and reduce MDA levels by 68.87%, while green spiced black garlic can reduce blood sugar levels by 43.33%, blood glucose response was 37.67%, and decreased MDA levels by 59.76%. The type of black garlic that has a higher potential to reduce blood glucose levels in hyperglycemic rats is lanang black garlic.
Keywords: antioxidant, black garlic, hypoglycemic, lanang black garlic
REFERENCES
Atkin, M., Laight, D., & Cummings, M.H. (2016). The effects of garlic extract upon endothelial function, vascular inflammation, oxidative stress and insulin resistance in adults with type 2 diabetes at high cardiovascular risk. A pilot double blind randomized placebo controlled trial. Journal of Diabetes and its Complications, 30(4), 723–727. https://doi.org/10.1016/j.jdiacomp.2016.01.003
Badan Pusat Statistik (BPS). (2023). Data impor bawang putih. Jakarta: Badan Pusat Statistik.
Dewi, N. (2011). Untung segunung bertanam aneka bawang. Yogyakarta: Pustaka Baru Press.
Djunaidi, S.C., Affandi, R.D., & Praseptiangga, D. (2014). Efek hipoglikemik tepung komposit (ubi jalar ungu, jagung kuning, dan kacang tunggak) pada tikus diabetes induksi streptozotocin. Jurnal Gizi Klinik Indonesia, 10(3), 119–126. DOI: 10.22146/ijcn.18859
De Marchi, U., Fernandez‐Martinez, S., de la Fuente, S., Wiederkehr, A., & Santo‐Domingo, J. (2021). Mitochondrial ion channels in pancreatic β‐cells: Novel pharmacological targets for the treatment of Type 2 diabetes. British Journal of Pharmacology, 178, 2077–2095. https://doi.org/10.1111/bph.15018
Gerritson, M.E., Carley, W.W., Ranges, G.E., Shen, C.P., & Phan, S.A. (1995). Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression. Am. J. Pathol., 147(2), 278–292.
Greenstein, B., & Wood, D. (2006). The endocrine system at a glance. Edisi 3. New Jersey: Wiley Blackwell.
Hassan, M.M., Billah, M.A.M., Rahman, M.M., Zaman, S., Shakil, M.M.H., & Angon, J.H. (2021). Early predictive analytics in healthcare for diabetes prediction using machine learning approach. In 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), (pp. 01-05). IEEE. DOI: 10.1109/ICCCNT51525.2021.9579799
Herlina, Soekarno, S., & Ivansyah, J.A. (2023). Production of black garlic from local garlic varieties of lumbu hijau at various aging. AIP Conference Proceedings, 2583(1), 090020. https://doi.org/10.1063/5.0119650
Ivansyah, J.A. (2020). “Karakteristik Fisiko-Kimia Black Garlic pada Berbagai Varietas Bawang Putih dan Lama Aging”. Skripsi. Jember: Prodi Teknologi Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Jember.
Jiang, Y., Yue, R., Liu, G., Liu, J., Peng, B., Yang, M., ... & Li, Z. (2024). Garlic (Allium sativum L.) in diabetes and its complications: Recent advances in mechanisms of action. Critical Reviews in Food Science and Nutrition, 64(16), 5290–5340. https://doi.org/10.1080/10408398.2022.2153793
Kaneto, H., Kimura, T., Shimoda, M., Obata, A., Sanada, J., Fushimi, Y., ... & Kaku, K. (2022). Molecular mechanism of pancreatic β-cell failure in type 2 diabetes mellitus. Biomedicines, 10(4), 818.nhttps://doi.org/10.3390/biomedicines10040818
Kementerian Kesehatan Republik Indonesia (Badan Kebijakan Pembangunan Kesehatan). (2023). Survei Kesehatan Indonesia (SKI) Tahun 2023. (https://dinkes.jatimprov.go.id › userfile › dokumen). [Diakses tanggal 22 Januari 2023].
Khin, P.P., Lee, J.H., & Jun, H.S. (2023). Pancreatic beta-cell dysfunction in type 2 diabetes. European Journal of Inflammation, 21, 1721727X231154152.nhttps://doi.org/10.1177/1721727X231154
Kim, H.J., Yu, H.S., Cho, J.S., Pan, H.J., Cho, T.H., Kim, H.J., Bong, Hyejin., Lee, Yeojin., Chang, H.M., Jeong, J.Y., Choi, Garam, & Kim, J.Y. (2017). Preparation of S-allyl cysteine-enriched black garlic juice and its antidiabetic effects in streptozotocin-include insulin-deficient mice. Journal of Agricultural and Food Chemistry.
Kimura, S., Tung, Y.C., Pan, M.H., Su, N.W., Lai, Y.J., & Cheng, K.C. (2017). Black garlic: A critical review of its production, bioactivity, and application. Journal of Food and Drug Analysis, 25 (1), 62–70. https://doi.org/10.1016/j.jfda.2016.11. 003
Koolman, J., & Roehm, K.H. (2005). Color atlas of biochemistry. Edisi 2. New York: Thieme.
Kumar, S., & Pandey, A. (2013). Chemistry and Biological Activities of Flavonoids: An Overview, The Scientific World Journal,2013, 1-16.
Kumari, A., Bhagat, A., & Henge, S. K. (2023). Detection of early-stage symptoms of diabetic retinopathy prediction performance in machine learning algorithms. In Recent Advances in Computing Sciences (pp. 120-124). Florida: CRC Press.
Lee, Y.M., Gweon, O.C., Seo, Y.J., Im, J., Kang, M.J., Kim, M.J., & Kim, J.I. (2009). Antioxidant effect of garlic and aged black garlic in animal model of type 2 diabetes mellitus. Nutrition Research and Practice, 3(2), 156-161. https://doi.org/10.4162/nrp.2009.3.2.156
Lemos, E.T., Oliviera, J., Pinheiro., J.P., & Reis, F. (2012). Review article: Regular physical exercise as a strategy to improve antioxidant and anti-inflammatory status: Benefits in type 2 diabetes mellitus. Exp Diabetes Res., pp: 1–15.
Lidiková, J., Čeryová, N., Tóth, T., Musilová, J., Vollmannová, A., Mammadova, K., & Ivanišová, E. (2022). Garlic (allium sativum L.): Characterization of bioactive compounds and related health benefits. Herbs and Spices-New Advances. IntechOpen. DOI: 10.5772/intechopen.108844
Lisiswanti, Rika., Haryanto, & Putra F. (2017). “Allicin pada Bawang Putih (Allium sativum) sebagai Terapi Alternatif Diabetes Melitus Tipe 2”. Fakultas Kedokteran. Univesitas Lampung.
Lv, Q.Z., Long, J.T., Gong, Z.F., Nong, K.Y., Liang, X.M., Qin, T., ... & Yang, L. (2021). Current state of knowledge on the antioxidant effects and mechanisms of action of polyphenolic compounds. Natural Product Communications, 16(7), 1934578X211027745. https://doi.org/10.1177/1934578X211027745
Mattew, P.T., & Augusti, K.T. (1973). Studies on the effect of allicin (diallyl disulhideoxide) on aloxan diabetes. Hypoglycaemic action and enhancement of serum insulin effect and glycogen synthesis. Ind. J. of Biocherm, 10, 209–212.
Mukherjee, S., Chopra, H., Goyal, R., Jin, S., Dong, Z., Das, T., & Bhattacharya, T. (2024). Therapeutic effect of targeted antioxidant natural products. Discover Nano, 19(1), 144. https://doi.org/10.1186/s11671-024-04100-x
Nugroho, A.E. (2006). Hewan percobaan diabetes melitus: Patologi dan mekanisme aksi diabetogenik. Biodiversitas, 7(4), 378–382.
Ogunlana, O.O., Adetuyi, B.O., Rotimi, M., Esalomi, L., Adeyemi, A., Akinyele, J., ... & Batiha, G.E.S. (2021). Hypoglycemic and antioxidative activities of ethanol seed extract of Hunteria umbellate (Hallier F.) on streptozotocin-induced diabetic rats. Clinical Phytoscience, 7(1), 55.nhttps://doi.org/10.1186/s40816-021-00285-1
Pasaribu, F., Panal, S., & Saiful, B. (2012). Uji Ekstrak Etanol Kulit Buah Manggis (Garcinia mangostana L.) Terhadap Penurunan Kadar Glukosa Darah”. Fakultas Farmasi Universitas Sumatera Utara, Sumatera Utara.
Platzer, M., Kiese, S., Tybussek, T., Herfellner, T., Schneider, F., Schweiggert-Weisz, U., & Eisner, P. (2022). Radical scavenging mechanisms of phenolic compounds: A quantitative structure-property relationship (QSPR) study. Frontiers in Nutrition, 9, 882458. https://doi.org/10.3389/fnut.2022.882458
Prasonto, D., Riyanti, E., & Gartika, M. (2017). Uji aktivitas antioksidan ekstrak bawang putih (Allium sativum L.). Bandung: Universitas Padjajaran.
Prastuti, Samijan, T.R., & Pramono, J. (2011). Intensifikasi budidaya bawang putih. Jawa Tengah: Balai Pengkajian Teknologi Pertanian.
Putra, I.W.A. (2015). Empat pilar penatalaksanaan pasien diabetes mellitus tipe 2. Bagian Fisiologi Fakultas Kedokteran Universitas Lampung, 4(9), pp. 8–12.
Rahman, M.M., Rahaman, M.S., Islam, M.R., Rahman, F., Mithi, F.M., Alqahtani, T., ... & Uddin, M.S. (2021). Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules, 27(1), 233. DOI: 10.3390/molecules27010233
Rasyid, H.N., Ismiarto, Y.D., & Prasetia, R. (2012). The efficacy of flavonoid antioxidant from chocolate bean extract: Prevention of myocyte deamage cause by reperfusion injury in predominantly anaerobic sports. Malaysian Orthopedic Journal, 6(3), 3–6.
Saryono, Nani, D., Proverawati, A., & Sarmok. (2021). Immunomodulatory effects of black solo garlic (Allium sativum L.) on streptozotocin-induced diabetes in Wistar rats. Heliyon, 7(12), e08493. https://doi.org/10.1016/j.heliyon.2021.e08493
Sherwood, L. (2001). Fisiologi manusia dari sel ke sistem. Edisi 2. Jakarta: EGC.
Song, X., Xue, L., Geng, X., Wu, J., Wu, T., & Zhang, M. (2023). Structural characteristics and immunomodulatory effects of melanoidins from black garlic. Foods, 12(10), 2004.mhttps://doi.org/10.3390/foods12102004
Subroto, E., Cahyana, Y., Tensiska, M., Lembong, F., Filianty, E., Kurniati, E., ... & Faturachman, F. (2021). Bioactive compounds in garlic (Allium sativum L.) as a source of antioxidants and its potential to improve the immune system: A review. Food Res., 5(6), 1–11.mhttps://doi.org/10.26656/fr.2017.5(6).042
Susanti, R., & Kristamtini, K. (2024). Lipid profile and blood glucose levels of wistar rats fed a non-high fat nutriment supplemented with black garlic extract. International Journal of Food Studies, 13(1), 46–58. https://doi.org/10.7455/ijfs/13.1.2024.a4
Tahir, Z., Saeed, F., Nosheen, F., Ahmed, A., & Anjum, F.M. (2022). Comparative study of nutritional properties and antioxidant activity of raw and fermented (black) garlic. International Journal of Food Properties, 25(1), 116-127. https://doi.org/10.1080/10942912.2022.2026954
Tumanggor, L., Fitria, R., Weni, M., & Tukan, M.M.N.M. (2023). Metabolisme zat gizi. Surabaya: Cipta Media Nusantara.
Wadsworth, T.L, & Koop D.R. (1999). Effect of the wine polypenolic quercetin and reseveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. Biochem. Pharmacol., 57(8), 941–9.
WHO. (2016). Global Report on Diabetes. France: World Health Organization;.
Widowati, W. (2008). Potensi antioksidan sebagai antidiabetes. JKM, 7(2), 1–11
Wu, M., Lee, M.Y., Bahl, V., Traum, D., Schug, J., Kusmartseva, I., ... & Kaestner, K.H. (2021). Single-cell analysis of the human pancreas in type 2 diabetes using multi-spectral imaging mass cytometry. Cell reports, 37(5), 109919. DOI:m10.1016/j.celrep.2021.109919
Yuriska, A. (2009). “Efek Aloksan Terhadap Kadar Glukosa Darah Tikus Wistar”. Fakultas Kedokteran, Universitas Diponegoro, Semarang.
Zhang, Z., Lei, M., Liu, R., Gao, Y., Xu, M., Zhang, M. (2015). Evaluation of alliin, saccharide contents and antioxidant activities of black garlic during thermal processing. Journal of Food Biochemistry, 1, 39–47. https://doi.org/10.1111/jfbc.12102
Published
20-12-2024
Issue
Vol. 18 No. 2 2024: Jurnal Agroteknologi
Pages
168-182
License
Copyright (c) 2024 Jurnal Agroteknologi
How to Cite
Herlina, Putri, N.A., Fauzi, M., & Damayanti, E.R. (2024). Potensi bawang hitam (black garlic) dari berbagai jenis bawang putih lokal sebagai hipoglikemik pada tikus hiperglikemia. Jurnal Agroteknologi, 18(2), pp.168-182. https://doi.org/10.19184/j-agt.v18i2.53728