Fefpi Nur Afnifitri Wias Arianti
Program Studi Magister Bioteknologi, Program Pasca Sarjana Universitas Jember, Indonesia
Anak Agung Istri Ratnadewi
Program Studi Kimia, Fakultas MIPA, Universitas Jember, Indonesia
Nurhayati Nurhayati
Program Studi Teknologi Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Jember, Indonesia
Jay Jayus
Program Studi Magister Bioteknologi, Program Pasca Sarjana Universitas Jember, Indonesia
Program Studi Teknologi Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Jember, Indonesia
DOI: https://doi.org/10.19184/j-agt.v17i02.41326
ABSTRACT
The demand for xylose as a xylitol raw material is increasing. The resource for this material can be explored from agricultural waste such as lignocellulosic material which is widely available in nature, cheap, and renewable. The bioconversion of lignocellulose waste into xylose can use microbes, either single culture or microbial consortia. The purpose of this research is to find out the ability of Bacillus subtilis, Aureobasidium pullulans, and Penicillium janczewskii to convert xylan of cassava waste to produce xylose, under both single individual culture and its consortia. The xylose release from the cultures were measured using DNS tests followed by HPLC determination. The results showed that the single microbial culture of B. subtilis, A. pullulans, and P. janczewskii was able to produce xylose released into the culture broth which was 75.06, 81.72, and 82.00 ppm respectively, indicating the xylanolytic enzymes activities from this microorganism which have the ability to convert xylan into xylose. Unexpectedly, all the mix culture of these microbial consortia were unable to produce higher xylose, the amount of xylose released were even lower became 63.11 ppm only when B. subtilis, A. pullulans, and P. janczewskii worked together in a simultaneous culture. This finding indicated that these three microorganisms might not be able to hydrolysed the xylan synergistically.
Keywords: bioconversion, lignocellulosic material, microbial consortia, xylanolytic enzyme
REFERENCES
Aniriani, G.W. (2017). Ekstraksi xilan dan delignifikasi bagas (limbah pabrik gula). Jurnal Enviscience, 1(1), 7. https://doi.org/10.30736/jev.v1i1.91
Aniriani, G.W., & Apriliani, N.F. (2017) Comparison of yield balance mass result of pretreatmentt three types of lignoselulosa waste in producing polysaccharide using chemical engineering. Jurnal Ilmiah Sains, 17(2), 136–142. https://doi.org/10.35799/jis.17.2.2017.17348
Ardiansyah, Y.T., Mulyani, N.S., & Sarjono, P.R. (2014). Isolasi dan karakterisasi enzim xilanase dari Bacillus subtilis pada media nutrient broth dengan penambahan xilan hasil isolasi jerami padi. Jurnal Kimia Sains dan Aplikasi, 17(3), 95–99.
https://doi.org/10.14710/jksa.17.3.95-99
Ariani, L.N., Estiasih, T., & Martati, E. (2017) Karakteristik sifat fisiko kimia ubi kayu berbasis kadar sianida. Jurnal Teknologi Pertanian 18(2), 119–128. https://doi.org/10.21776/ub.jtp.2017.018.02.12
Arini, N., Rizka, M.E.P., Safira, N.F., & Syifa, K.N. (2021). ‘Tinjauan Literatur: Imobilisasi Sel Bakteri Termofilik Penghasil Enzim Xylanase’, (2001), pp. 1217–1225.
Bankeeree, W., Lotrakul, P., Prasongsuk, S., Chaiareekij, S., Eveleigh, D.E., Kim, S. W., & Punnapayak, H. (2014). Effect of polyols on thermostability of xylanase from a tropical isolate of Aureobasidium pullulans and its application in prebleaching of rice straw pulp. SpringerPlus, 3(1), 1–11. https://doi.org/10.1186/2193-1801-3-37
Bansal, N., Soni, R., Janveja, C., & Soni, S.K. (2014). Production of xylanase-cellulase complex by Bacillus subtilis NS7 For the biodegradation of agro waste residues. Lignocellulose Journal, 1(3), 196–209.
Bharathiraja, B., Sudharsanaa, T., Bharghavi, A., Sri Sowmeya, G., & Gopika, B. (2014). Insights on lignocellulosic pretreatments for biofuel production- SEM and reduction of lignin analysis’, International Journal of ChemTech Research, 6(9), 4334–4444.
Datta, R. (1981). Acidogenic fermentation of lignocellulose–acid yield and conversion of components. Biotechnology and Bioengineering, 23(9), 2167–2170. https://doi.org/10.1002/bit.260230921
Fairus, S., Ronny, K., Ridho, T., & Adhytia, S.N. (2016). Kajian pembuatan xilitol dari tongkol jagung melalui proses fermentasi. Al-Kauniyah Jurnal Biologi, 6(2), 91–100.
https://doi.org/10.15408/kauniyah.v6i2.2750.
Fawzya, Y.N., Rani, E.P., Wibowo, M., Ifah, M., & Gintung, P. (2013). Produksi dan karakterisasi xilanase dari isolat bakteri M-13.2a asal air laut Manado. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 8(1), 55. https://doi.org/10.15578/jpbkp.v8i1.53
Firdausa, F.K., Santoso, A.B., & Handayani, W. (2017). Ekstraksi xilan dari limbah ampas singkong dan pemanfaatannya sebagai substrat endo-B-1,4-D-xilanase. Berkala Sainstek, 5(1), 50–54. https://doi.org/10.19184/bst.v5i1.5376
Gautério, V.G., Matheus, C.V., Larissa, da Silva, G.G., Tamires, H., Ana, V.L.S., & Susana, J.K. (2018). Production of xylanolitic enzymes and xylooligosaccharides by Aureobasidium pullulans CCT 1261 in submerged cultivation. Industrial Crops and Products, 125, 335–345. https://doi.org/10.1016/j.indcrop.2018.09.011
Irfan, M., Asghar, U., Nadeem, M., Nelofer, R., & Syed, Q. (2016). Optimization of process parameters for xylanase production by Bacillus sp. in submerged fermentation. Journal of Radiation Research and Applied Sciences, 9(2), 139–147. https://doi.org/10.1016/j.jrras.2015.10.008
Isrami, F., & Aminin, A.L.N. (2014). Aktivitas selulase dan xilanase dari komplek enzim. Jurnal Kimia Sains dan Aplikasi, 17(2), 17–22.
Jayus, Oslan, J., Barbara M., & Robert, J.S. (2005). Synthesis of extracellular (1→3)- and (1→6)-β-glucanase activities in carbon limiting chemostat culture by the fungus Acremonium sp. IMI 383068. Enzyme and Microbial Technology, 36(5–6), 680–686.
https://doi.org/10.1016/j.enzmictec.2004.12.010
Jayus, J., Nafi', A., & Hanifa, A.S. (2019). Degradasi komponen selulosa, hemiselulosa, dan pati tepung kulit ubi kayu menjadi gula reduksi oleh Aspergillus niger, Trichoderma viride, dan Acremonium sp. IMI 383068. Jurnal Agroteknologi, 13(01), 34–41. https://doi.org/10.19184/j-agt.v13i01.7868
Kurnia, N., & Marwatoen, F. (2013). Penentuan kadar sianida daun singkong dengan variasi umur daun dan waktu pemetikan. Hydrogen: Jurnal Kependidikan Kimia, 1(2), 117–121.
https://doi.org/10.33394/hjkk.v1i2.636
Kusmiati, & Agustini, N.W.S. (2010). Pemanfaatan limbah onggok untuk produksi asam sitrat dengan penambahan mineral Fe dan Mg pada Substrat menggunakan kapang. Seminar Nasional Biologi, (September), pp. 856–866.
Listyawati, A.F. (2018). Pola pertumbuhan Pseudomonas sp. dengan menggunakan variasi konsentrasi d-glukosa dalam media pertumbuhan terhadap waktu inkubasi. Jurnal Ilmiah Kedokteran Wijaya Kusuma, 5(2), 29–32. https://doi.org/10.30742/jikw.v5i2.339
Manitchotpisit, P., Leathers, T.D., Peterson, S.W., Kurtzman, C.P., Li, X.L., Eveleigh, D.E., Lotrakul, P., Prasongsuk, S., Dunlap, C.A., Vermillion, K.E., & Punnapayak, H. (2009). Multilocus phylogenetic analyses, pullulan production and xylanase activity of tropical isolates of Aureobasidium pullulans. Mycological Research, 113(10), 1107–1120. https://doi.org/10.1016/j.mycres.2009.07.008
Mosier, N., Charles, W., Bruce, D., Richard, E., Lee, Y.Y., Mark, H., & Michael, L. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686. https://doi.org/10.1016/j.biortech.2004.06.025
Murthy, P.S., & Naidu, M.M. (2012). Production and application of xylanase from Penicillium sp. utilizing coffee by-products. Food and Bioprocess Technology, 5(2), 657–664. https://doi.org/10.1007/s11947-010-0331-7.
Muawanah, Anshar, M., & Lisaholet, M. (2020). Perbandingan kadar sianida sebelum dan sesudah pengolahan pada singkong. Jurnal Medika: Media Ilmiah Analis Kesehatan, 5(1), 2540–7910. DOI: 10.53861/jmed.v5i1.173
Nasution, M.N., Feliatra, F., & Effendi, I. (2021). Analisis pertumbuhan protein sel tunggal (PST) bakteri Bacillus cereus dengan media yang berbeda. Jurnal Perikanan dan Kelautan, 26(1), 47–53. https://doi.org/10.31258/jpk.26.1.47-53
Pangesti, N.W.I., Pangastuti, A., & Retnaningtyas, E. (2012). Pengaruh penambahan molase pada produksi enzim xilanase oleh fungi Aspergillus niger dengan substrat jerami padi. Bioteknologi, 9(2), 41–48. https://doi.org/10.13057/biotek/c090202
Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., & Amorim, D.S. (2005). Xylanases from fungi: Properties and industrial applications. Applied Microbiology and Biotechnology, 67(5), 577–591.
https://doi.org/10.1007/s00253-005-1904-7
Purnawan, A., Ahmad, T., Lutfi, N.K., & Urip, P. (2021). Review hidrolisis biomasa lignoselulosa untuk xilitol. Jurnal Ilmu Lingkungan, 19(3), 485–496. https://doi.org/10.14710/jil.19.3.485-496
Ratnadewi, A.A.I., Agung, B.S., Erma, S., & Wuryanti, H. (2016). Application of cassava peel and waste as raw materials for xylooligosaccharide production using endoxylanase from Bacillus subtilis of soil termite abdomen. Procedia Chemistry, 18, 31–38. https://doi.org/10.1016/j.proche.2016.01.007
Rattanachomsri, U., Sutipa, T., Lily, E., & Verawat, C. (2009). Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. Journal of Bioscience and Bioengineering, 107(5), 488–493. https://doi.org/10.1016/j.jbiosc.2008.12.024
Raveendran, S., Binod, P., Sabeela, B.U., Amith, A., Anil, K.M., Aravind, M., Sharrel, R., & Ashok, P. (2018). Applications of microbial enzymes in food industry. Food Technology and Biotechnology, 56(1), 16–30. https://doi.org/10.17113/ftb.56.01.18.5491.
Retnoningtyas, E.S., Antaresti, & Aylianawati. (2013). Aplikasi crude enzim selulase dari tongkol jagung (Zea mays L.) pada produksi etanol dengan metode simultaneous saccharification and fermentation (SSF). Reaktor, 14(4), 272–276.
Richana, N. (2002). Produksi dan prospek enzim xilanase dalam pengembangan bioindustri di Indonesia. Buletin AgroBio, 5(1), 29–36.
Richana, N., Irawadi, T.T., Anwar, M.N., Illah, S., Khaswar, S., & Yandra, A. (2007) Ekstraksi xilan dari tongkol jagung. Indonesian Journal of Agricultural Postharvest Research, 4(1), 38–43. https://doi.org/10.21082/jpasca.v4n1.2007.38-43
Richana, N., Irawadi, T.T., Anwar, M.N., & Khaswar, S. (2016). Isolasi identifikasi bakteri penghasil xilanase serta karakterisasi enzimnya. Jurnal AgroBiogen, 4(1), 24–34. https://doi.org/10.21082/jbio.v4n1.2008.p24-34
Ruswandi, Budhi, O., & Azhar, M. (2018). Penentuan kadar fruktosa hasil hidrolisis iinulin dengan DNS sebagai pengoksidasi. Eksakta, 19(1), 4–23. https://doi.org/10.24036/eksakta/vol19-iss01/102
Solahuddin, Nisa, I.H., Rizqa, F.D., & Handa, M. (2021). Isolasi dan uji aktivitas enzim selulase dari rumen sapi (Bibos javanicus). Journal of Science, Technology, and Enterpreneurship, 3(1), 3–9.
Sun, X.F., Sun, R.C., Tomkinson, J., & Baird, M.S. (2003). Preparation of sugarcane bagasse hemicellulosic succinates using NBS as a catalyst. Carbohydrate Polymers, 53(4), 483–495. https://doi.org/10.1016/S0144-8617(03)00150-4
Susilowati, P.E., Sapto, R., Desi, K., Rahmawati, R., Sumarlin, & Ardiansyah. (2013). Produksi xilanase dari isolat sumber air panas sonai, Sulawesi Tenggara, menggunakan limbah pertanian. Jurnal Natur Indonesia, 14(3), 199–204. https://doi.org/10.31258/jnat.14.3.199-204
Sutrisno. (2006). Isolasi dan karakterisasi ekstrak kasar enzim xilanase dari Aspergillus niger. Jurnal Kimia, 12, 75–77.
Terrasan, C.R.F., Beatriz, T., Marta, C.T.D., & Eleonora, C.C. (2010). Production of xylanolytic enzymes by Penicillium janczewskii. Bioresource Technology, 101(11), 4139–4143. https://doi.org/10.1016/j.biortech.2010.01.011
Tihomirova, K., Dalecka, B., & Mezule, L. (2016). Application of conventional HPLC RI technique for sugar analysis in hydrolysed hay. Agronomy Research, 14(5), 1713–1719.
Vilela, L. de F., de Araujo, V., Paredes, R. de S., Bon, E.P. da S., Torres, F.A.G.N., Bianca, C.E., & Elis, C.A. (2015). Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express, 5(1), 1–7. https://doi.org/10.1186/s13568-015-0102-y