Yuvita Lira Vesti Arista
Program Studi Teknologi Hasil Pertanian, Fakultas Pertanian, Univeristas PGRI Banyuwangi, Indonesia
Dewi Mutamimah
Program Studi Teknologi Hasil Perikanan, Fakultas Pertanian, Univeristas PGRI Banyuwangi, Indonesia
DOI: https://doi.org/10.19184/j-agt.v17i02.42930
ABSTRACT
Plastic is often chosen as packaging for food products because it’s considered practical, non-corrosive, low cost, and able to withstand product water migration, but it’s difficult to degrade. So, it need biodegradable plastic to handle that, but most of the biodegradable plastics that have been developed only focus on ease of degradation, do not focus on the microbial contamination problem during use it. One alternative that can be developed is to make antimicrobial bioplastic based on starch from dragon fruit peel and biduri leaves as an antimicrobial source. Until now there is no further information regarding the mechanical properties and degradation ability of antimicrobial bioplastic based on starch from dragon fruit peel and biduri leaf extract. Therefore this research was carried out to determine the mechanical properties including tensile strength, modulus young, and elongation as well as degradation ability against Aspergillus niger. The research was conducted using the completely randomized design factorial method which consists 2 factors, where the first factor was the dragon fruit peel starch variation (P1: 15%, P2: 30%, P3: 45%, P4: 60%) and the second factor was the biduri leaf extract addition (B1: 3%, B2: 6%, B3: 9%, B4: 12%). Mechanical properties (elongation and tensile strength) was carried out using Mat. Testing Machine, while modulus young testing uses tension testing. Antimicrobial bioplastic degradation capability testing using Aspergillus niger is calculated based on weight loss. The research results showed that the treatment with the addition of 15% dragon fruit peel starch (P1) had good mechanical properties ranging from tensile strength, modulus young, and elongation, while the addition of biduri extract had no effect. The best biodegradation ability was the addition of 60% starch (P4) on antimicrobial bioplastic. The use of starch in greater concentrations can reduce mechanical properties but increase biodegradation capacity.
Keywords: antimicrobial packaging, biodegradable polymer, cross linking, starch
REFERENCES
Aguirre-Joya, A.J, Miguel, A., De Leon-Zapata, Olga, B.A.P, Cristian, T.L, & Diana. (2018). Basic and applied concepts of edible packaging for food. In Food Packaging and Preservation (pp. 1–61). Elsevier Inc. http://dx.doi.org/10.1016/B978-0-12-811516-9.00001-4
Aidzan, W., Ali, R.A., Jamaluddin, J., & Mohammad, I.I. (2009). Development of polyethylene sago based biofilm via blown film molding technique. Faculty of Chemical and Natural Resources. Malaysia, Universiti Teknologi Malaysia.
Alqahtani, N., Tareq, A., & Salim, A. (2021). Development of low-cost biodegradable flms from corn starch and date palm pits (Phoenix dactylifera). Journal Food Bioscience, 42, 2–7. https://doi.org/10.1016/j.fbio.2021.101199
Askeland, D.R., Fulay, P.P., & Wright, W.J. (2010). The science and engineering of materials 6th edition. USA: Cengange Learning.
Arincibia, M., Gimenez, B., Lopez-Caballero M.E., Gomez-Guill, M.C., & Montero, P. (2014). Release of cinnamon essential oil from polysaccharide bilayer films and its use for microbial growth inhibition in chilled shrimps. Journal LWT - Food Science and Technology, 59(2), 1–7. http://dx.doi.org/10.1016/j.lwt.2014.06.031
ASTM (American Standar Testing Material D638). (2005). Standard test method for tensile poperties of plastic. Philadelphia: American Society for Testing Materials.
Ayodha, D., & Guttena, V. (2017). One-pot green synthesis, characterization, photocatalytic, sensing, and antimicrobial studies of Calotropis gigantea leaf extract capped CdS NPs. Journal Materials Science & Engineering: B, 225, 33–44. http://dx.doi.org/10.1016/j.mseb.2017.08.008
Basiak, E., Sabina, G., & Andrzej, L. (2014). Characterisation of composite edible films based on wheat starch and whey-protein isolate. International Journal of Food Science and Technology, 50(2), 372–380. DOI: 10.1111/ijfs.12628
Budiman, J., Rodiana, N., & Shanti, D.L. (2018). Karakteristik Bioplastik dari pati buah lindur (Bruguiera gymnorrizha). FishtecH – Jurnal Teknologi Hasil Perikanan, 7(1), 49–59.
Boedeker, USA. (2017). Polyetylene Specifications. [online]. Boedeker Plastic INC. (Available at: http://www.boedker. com/polyp_p.html) [Accesed 26 December 2023].
Cornelia, M., Syarief, R., Effendi, H., & Nurtama, B. (2013). Pemanfaatan Pati Biji Durian (Durio zibethinus Murr.) dan pati sagu (Metroxylon sp.) dalam pembuatan bioplastik. J. Kimia Kemasan, 35(1), 20–29.
Das, K., Dipa, R., Bandyopadhyay, N.R, Anirudhha, G., Suparna, S., Saswata, S., . . . Manjusuri, M. (2010). Preparation and characterization of cross-linked starch/poly (vinyl alcohol) green films with low moisture absorption. Journal Ind. Eng.Chem, 49, 2176–2185.
Deepika, S., & Jaya. M.R. (2015). Biodegradation of low density polyethylene by microorganisms from garbage soil. Journal of Experimental Biology and Agricultural Sciences, 3, 15–21.
Fa'is, J.A., Ratna, S.D., & Ajeng, A.S. (2021). Biodegradasi Bioplastik berbasis pati menggunakan isolat fungi indigenous asal tempat pembuangan akhir Gunung Tugel, Kabupaten Banyumas. BioEksakta: Jurnal Ilmiah Biologi Unsoed, 3(4), 205–215.
González, A., Gastelú, G., Gabriela, N.B., Pablo, D.R., & Cecilia, I.Á.I. (2018). Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products. Journal Food Hydrocolloids, 89, 758–764. DOI: 10.1016/j.foodhyd.2018.11.051
Gutierrez-Pacheco, M.M., Ortega-Ramirez L.A., Cruz-Valenzuela, M.R., Silva-Espinoza, B.A., Gonzalez-Aguilar, G.A., & Ayala-Zavala, J.F. (2016). Antimicrobial food packaging. Chapter 50: Combinational Approaches for antimicrobial packaging: Pectin and cinnamon leaf oil, pp: 609–708. Academia Press. http://dx.doi.org/10.1016/B978-0-12-800723-5.00050-4
Jeevahan, J., & Chandrasekaran, M. (2019). Nanoedible films for food packaging: A review. Journal Mater Sci. https://doi.org/10.1007/s10853-019-03742-y
Kim, M., & Lee, S.J. (2002). Characteristics of crosslinked potato starch and starch-filled linear low-density polyethylene films. Jounal Carbohydrate Polymers, 50(4), 331–337. https://doi.org/10.1016/S0144-8617(02)00057-7
Kumar, S., Merina, P.D.L., Jeyanthi, R., & Sharmila, S. (2013). Isolation and identification of LDPE degrading fungi from municipal solid waste. Journal of Chemical and Pharmaceutical Research, 5(3), 78–81.
Lailyningtyas, D.I., Musthofa, L., & Ary, M.A. (2020). Uji mekanik bioplastik berbahan pati umbi ganyong (Canna edulis) dengan variasi selulosa asetat dan sorbitol. Jurnal Keteknikan Pertanian Tropis dan Biosistem, 8(1), 91–100. https://doi.org/10.21776/ub.jkptb.2020.008.01.09
Listyarini, R.V., Puspita, R.S., Esther, N.N., & Maria, A.T.Y. (2020). Bioplastic from pectin of dragon fruit (Hylocereus polyrhizus) peel. Jurnal Kimia Sains dan Aplikasi, 23(6), 203–208. https://doi.org/10.14710/jksa.23.6.203-208
Muhonja, C.N., Huxley, M., Gabriel, M., & Mabel, I. (2018). Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. Journal PLOS-ONE, 13(7), 1–17. DOI: 10.1371/journal.pone.0198446
Naqash, F., Masoodi F.A., Omeera, A., & Sadaf, P. (2021). Effect of active pectin edible coatings on the safety and quality of fresh-cut apple. International Journal of Food Science and Technology, pp. 1–10. DOI: 10.1111/ijfs.15059
Nissa, R.C., Fikriyyah, A.K., Abdullah, A.H.D., & Pudjiraharti, S. (2019). Preliminary study of biodegradability of starch-basedbioplastics using ASTM G21-70, dip-hanging, and soil burial test methods. IOP Conference Series: Earth and Environmental Science, 277(1).
Noviyanti, Y., Hepiyansori, & Yudan, A. (2020). Identifikasi dan penetapan kadar senyawa tanin pada ekstrak daun biduri (Calotropis gigantea) metode spektrofotometri UV-Vis. Jurnal Ilmiah Manuntung, 6(1), 57–64.
Patel, S., Anubhav, D., & Ajay, K.G. (2023). Evaluation of antimicrobial activity of Calotropis gigantea extracts on two main skin infection causing bacteria -Escherichia coli and Staphylococcus aureus. Journal of Food and Nutritional Sciences, 145–157.
Pattnaik, P.K., Dattatreya, K., Hiranyamayee, C., Sajad, S., Goutam, G., & Ananya, K. (2016). Chemometric profile & antimicrobial activities of leaf extract of Calotropis procera and Calotropis gigantea. Journal Natural Product Research, 1–5. (Available at http://www.tandfonline.com/loi/gnpl20)
Petkoska, A.T., Davor, D., Nathan, M.D., Nenad, N., & Anita, T.B. (2021). Edible packaging: Sustainable solutions and novel trends in food packaging. Journal Food Research International, 140, 1–15. https://doi.org/10.1016/j.foodres.2020.109981
Saklani, P., Siddhnath, Sambit, K.D., & Shiv, M.S. (2019). A Review of edible packaging for foods. International Journal of Current Microbiology and Applied Sciences, 8(7), 2885–2895. https://doi.org/10.20546/ijcmas.2019.807.359
Saman, W.R., Indah, Y., & Sugiarto. (2019). Physicochemical characteristics and functional properties of white sweet potato starch. International Journal of Engineering and Management Research, 9(3), 53–57. https://doi.org/10.31033/ijemr.9.3.7
Sánchez-Ortega, I., Blanca, E.G.A., Eva, M.S.L., Aldo, A.R., Eleazar, J.B.C., & Carlos, R. (2014). Antimicrobial edible films and coatings for meat and meat products preservation: Review article. Scientific World Journal, 1–18. http://dx.doi.org/10.1155/2014/248935
Setiyoko, A., & Fety, A.Y. (2021). Pengaruh lama pengadukan dan konsentrasi stpp terhadap karakteristik pati suweg (Amorphophallus campanulatus) termodifikasi ikatan silang. Jurnal Teknologi Hasil Pertanian, 14(2), 108–116. https://doi.org/10.20961/jthp.v14i2.51984
Shafiri, K.A., & Sajad, P. (2021). Biodegradable flm of black mulberry pulp pectin/chlorophyll of black mulberry leaf encapsulated with carboxymethylcellulose/silica nanoparticles: Investigation of physicochemical and antimicrobial properties. Journal Materials Chemistry and Physics, 1–16. https://doi.org/10.1016/j.matchemphys.2021.124580
Sinaga, R.F., Gita, M.G., Hendra, M.S.G., & Rosdanelli, H. (2014). Pengaruh penambahan gliserol terhadap sifat kekuatan tarik dan pemanjangan putus bioplastik dari pati umbi talas. Jurnal Teknik Kimia USU, 3(2), 19–24.
Thakur, R., Pristijono, P., Bowyer, M., Singh, S.P., Scarlett, C.J., Stathopoulos, C.E., & Vuong, Q.V. (2018). A starch edible surface coating delays banana fruit ripening. Journal LWT-Food Science and Technology. 100, 341–347. https://doi.org/10.1016/j.lwt.2018.10.055
Tharanathan, R.N. (2005). Starch — Value addition by modification: Critical reviews. Journal Food Science and Nutrition, 45(5), 371–384. DOI: 10.1080/10408390590967702
Troung, T.C.T., & Takomi, K. (2020). Pectin bioplastic films regenerated from dragon fruit peels. Journal Enviromental Sciences, 62(4), 18–22. DOI: 10.31276/VJSTE.
Urbanek, A.K., Rymowicz, W., Strzelecki, M.C., Kociuba, W., Franczak, Ł., & Mirończuk, A.M., 2017. Isolation and Characterization of arctic microorganisms decomposing bioplastics. Amb. Express, 7(1), 148–158.
Xie, F., Eric, P., Peter, J.H., & Luc, A. (2021). Advanced nano-biocomposites based on starch. Ialam Polysaccharides, pp. 1–75. Springer International Publishing Switzerland. DOI 10.1007/978-3-319-03751-6_50-1
Yunar, V. (2011). “Evaluasi Biodegradabilitas Plastik Berbahan Dasar Campuran Pati dan Polietilen Menggunakan ASTM G21-09, Uji Mikroorganisme, dan Uji Lapangan”. Skripsi. Fakultas Teknik, Universitas Indonesia.